We're hiring!
*

Android: NXP i.MX6 Buffer Modifier Support

Robert Foss avatar

Robert Foss
June 05, 2017

Share this post:

GPUs like those of Intel and Vivante support storing the contents of graphical buffers in different formats. Support for describing these formats using modifiers has now been added to Android and Mesa, enabling tiling artifact free running of Android on the iMX6 platform.

With modifier support added to Mesa and gbm_gralloc, it is now possible to boot Android on iMX6 platforms using no proprietary blobs at all. This makes iMX6 one of the very few embedded SOCs that needs no blobs at all to run.

Not only is that a great win for Open Source in general, but it also makes the iMX6 more attractive as a platform. A further positive point is that this lays the groundwork for the iMX8 platform, and supporting it will come much easier.

What are modifiers used for?

Modifiers are used to represent different properties of buffers. These properties can cover a range of different information about a buffer, for example compression and tiling.

For the case of the iMX6 and the Vivante GPU which it is equipped with, the modifiers are related to tiling. The reason being that buffers can be tiled in different ways (Tiled, Super Tiled, etc.) or not at all (Linear). Before sending buffers out to a display, they need to have the associated tiling information made available, so that the actual image that is being sent out is not tiled.

How was support added?

Support was added in two places; Mesa and gbm_gralloc. Mesa has had support added to many of the buffer allocation functions and to GBM (which is the API provided by Mesa, that gbm_gralloc uses).

gbm_gralloc in turn had support added for using a new GBM API call, GBM_BO_IMPORT_FD_MODIFIER, which imports a buffer object as well as accompanying information like modifier used by the buffer object in question.

Getting up and running

Currently the modifiers work is in the process of being upstreamed, but in the meantime it can be found here. If you'd like to test this out yourself a How-To can be found here.

Thanks

This work is built on efforts by a lot people:

This post has been a part of work undertaken by my employer Collabora, and has been funded by Zodiac Inflight Innovations.

 

Original post

Comments (0)


Add a Comment






Allowed tags: <b><i><br>Add a new comment:


Search the newsroom

Latest Blog Posts

Zink: Fall Update

24/10/2019

I recently went to XDC 2019, where I gave yet another talk about Zink. I kinda forgot to write a blog-post about it, so here’s me trying…

Adding stateless support to vicodec

09/10/2019

Prior to joining Collabora, I took part in Round 17 of the Outreachy internships, to work on the virtual drivers in the media subsystem…

Why HDCP support in Weston is a good thing

03/10/2019

What HDCP is, and why supporting HDCP in Weston is justified in both an economical and technical context.

Virglrenderer and the state of virtualized virtual worlds

28/08/2019

With the release of virglrenderer 0.8.0, getting accelerated OpenGL within a virtual machine (VM) made a big leap forward. Since virglrenderer-0.7.0,…

ROCK Pi and an easy place: Panfrost & Wayland on a Rockchip board

06/08/2019

Ongoing work on the reverse-engineered Panfrost OpenGL ES driver for Arm Mali GPUs has turned the RK3399 SoC into a very attractive platform…

What's new in OpenXR 1.0 & Monado?

02/08/2019

As part of its unwavering commitment to open source and open standards, Collabora is proud to be part of bringing the recently-released…

Open Since 2005 logo

We use cookies on this website to ensure that you get the best experience. By continuing to use this website you are consenting to the use of these cookies. To find out more please follow this link.

Collabora Ltd © 2005-2019. All rights reserved. Website sitemap.