We're hiring!
*

Lucid sleep in the free desktop

Tomeu Vizoso avatar

Tomeu Vizoso
May 01, 2015

Share this post:

For the past year I have been working on the kernel side to bring some ChromeOS features to upstream.

One of the areas I'm currently working on is what Google calls Lucid Sleep, which is basically the ability of performing work while the machine is in a low power state such as suspend. I'm writing this blog post because there has been interest on this in different communities and the discussion is currently a bit dispersed.

Small mobile devices have been able to do that since basically always and this feature brings it to bigger devices that traditionally have been either on or off. It's similar to what Microsoft calls InstantGo (previously Connected Standby).
Checking if the battery level is so low that it would be better to completely power down the machineA few examples of tasks that the system could perform while apparently sleeping are:
  • Starting a network backup if the present connectivity allows it (a known access point may have become accessible)
  • Downloading email
  • Checking for new instant messages
With regards to functionality and leaving performance considerations aside, userspace could implement this without requiring any new support in the kernel as illustrated in this scenario:
  • We assume that a video is currently playing in YouTube
  • User closes the lid
  • PM daemon notifies userspace of an impending sleep
  • Browser pauses playback
  • Compositor switches off the screen
  • Kernel freezes userspace, suspends devices and puts the CPUs to idle
  • Time passes...
  • RTC alarm fires off
  • Kernel resumes devices and unfreezes userspace
  • Userspace realizes there hasn't been any user activity since it went to sleep last, so stays in "dark resume" mode
  • Userspace does any lucid tasks it wants, then goes back to sleep again
  • Kernel freezes userspace, suspends devices and puts the CPUs to idle
  • Time passes...
  • User opens lid
  • Kernel resumes devices and unfreezes userspace
  • PM daemon notices the SW_LID event, so notifies userspace that this is a full-on resume
  • Compositor switches screen on
  • Browser resumes playback

No changes needed in the kernel is always good news, but there's two issues.

Lost input events

Sometimes the event from the input device that woke the system up gets lost before it reaches userspace, so we don't know if we can stay dark and do our lucid stuff, or if the user expects the machine to power completely on.

This is in any case a bug, but if it needs to be fixed in the firmware, we may not be able to do much about it. At most we could get the kernel to synthesize an input event, but sometimes it may not have enough information to do so.
 

Performance

When the system wakes up, there tends to be a lot to do in the kernel and userspace, so it could take several seconds for the screen to come up from the moment the user opened the lid in the scenario presented above.

For ChromeOS this isn't acceptable so they are carrying some patches in their kernel that make some shortcuts possible (the screen is left on at suspend time, and the kernel knows at resume time whether it has to power it on based on which was the wakeup source, thus not having to wait for userspace).
 
Fortunately, there have been some changes recently in the kernel PM subsystem that can speed up resumes quite a bit and we can make use of them to offset the penalty of dropping those shortcuts.

The first is idling the CPUs instead of suspending to firmware, which on modern SoCs should be quite efficient and much faster, by a few tenths of seconds.

The other is to leave idle devices that are already in a low power state alone when suspending, which means that we don't have to wait for them to resume when the system wakes up. In every system I have seen there's always a few devices that take a long time to resume, so this can shave several tenths of seconds from the total resume time.

Both need some amount of support in either the platform or in device drivers, and that's what I'm currently working on for the Tegra-based Chromebooks.
 

Related Posts

Related Posts

Comments (0)


Add a Comment






Allowed tags: <b><i><br>Add a new comment:


Search the newsroom

Latest Blog Posts

Integrating libcamera into PipeWire

11/09/2020

PipeWire continues to evolve with the recent integration of libcamera, a library to support complex cameras. In this blog post, I'll explain…

Pushing pixels to your Chromebook

31/08/2020

A high-level introduction of the Linux graphics stack, how it is used within ChromeOS, and the work done to improve software rendering (while…

Using the Linux kernel's Case-insensitive feature in Ext4

27/08/2020

Last year, a (controversial) feature was added to the Linux kernel to support optimized case-insensitive file name lookups in the Ext4 filesystem.…

Panfrost performance counters with Perfetto

21/08/2020

We have now integrated Mali GPU hardware counters supported by Panfrost with Perfetto's tracing SDK, unlocking all-in-one graphics-aware…

Paving the way for high bitrate video streaming with GStreamer's RTP elements

20/08/2020

Key performance improvements and fixes to GStreamer's RTP stack have landed in GStreamer 1.18, due in the coming months. The latest enhancements…

Understanding computer vision & AI, part 1

13/08/2020

Following our recent presentation at OSSummit, many showed interest in learning more about solving real-world problems with computer vision.…

Open Since 2005 logo

We use cookies on this website to ensure that you get the best experience. By continuing to use this website you are consenting to the use of these cookies. To find out more please follow this link.

Collabora Ltd © 2005-2020. All rights reserved. Privacy Notice. Sitemap.